Unique Almen Gage and the Space Shuttle

Plus
- Isotropic Mass Finishing
- New Automated Peen Forming for Wings
- Principles of Spiral Gravity Classification
A CUT ABOVE THE REST

Number one in cut wire shot since first pioneering the process nearly 60 years ago. Product quality, consistency and durability combined with knowledge, customer service and delivery still make us number one today.
4 Plastic Media Blasting—Controlling the Process
Innovative Peening Systems integrates the Aero-Almen gage into their quality-controlled blasting of space shuttle components.

6 Isotropic Mass Finishing for Surface Integrity and Part Performance
While burrs are always bad, sometimes dimples aren’t so great either. Superfinishing treatments, like Isotropic Mass Finishing, may provide the ultimate peening treatment for many applications.

14 KSA Develops New Automated Peen Forming for Wing Skins
KSA, in corporation with AeroSphere, Inc., begins testing of new APF process on aircraft this fall.

18 Shot Peening Solutions Save Prop Maker Money
Time IS money and Herb Tobben and Clemco save a prop maker over 400 hours a year in labor costs.

24 Principles of Spiral Gravity Classification
A paper from our shot peening academic, Dr. David Kirk.

38 Industry News

42 The Parting Shot

The Shot Peener
- 20 years in publication
- Over 5,000 readers
- Read in 85 countries
The most popular way to remove paint from an aircraft in the 1970s was to cover it with chemicals that would attack and swell the paint. The paint would then be removed by laborious methods such as rubbing and sanding. These methods created a hazardous stew of paint and toxic chemicals. Environmental regulations and the increased costs associated with handling and disposing of several thousand gallons of toxic waste for each aircraft became prohibitively time-consuming and expensive.

Another unrelated industry had a waste disposal challenge of a different nature. Button manufacturers were creating a waste by-product of buttonhole chads. I don’t know who put buttonhole chads into a blast machine for aircraft paint stripping for the first time, but it certainly has evolved into a very large industry over the past 35 years. Button chads are no longer used as plastic blasting media but the media is still commonly made from a by-product of plastic items.

The uses for Plastic Media Blasting (PMB) are endless and more are being discovered every day. Traditional PMB is performed on coated flight surfaces such as airplane skins. Can you imagine using chemicals to strip the paint off of a C-5 military cargo plane or the delicate surfaces of the radar evasive B-2 bomber? The C-5 has 10,000 pounds of paint on the aircraft and the B-2 has many complex radar absorbing substrates. Economics dictate that a simple and effective method be used. Chemically stripping these aircraft is simply too expensive and environmentally unacceptable.

While PMB is cost-effective and environmentally-responsible, it’s crucial to control the process so that it strips away tough paint and thermal-protection materials without damaging surfaces. Until recently, the PMB industry used subjective methods of inspecting the quality of the end result.

In 1994, Innovative Peening Systems built a state-of-the-art PMB facility for NASA at the Kennedy Space Center for stripping delicate space shuttle flight hardware such as the solid rocket boosters (SRB). The NASA paint-stripping operators developed a quality standard to establish the process with an aluminum coupon that was approximately two-foot-square and coated with a similar type of paint that was to be removed from the shuttle component. After machine setup, the operator would blast the coupon and then inspect it for surface roughness. If the blast stream was too aggressive, the coupon would exhibit severe surface roughness, indicating a dangerous blasting condition. The challenge now was how to quantify and control this degree of blast intensity.

Does this sound familiar, Almen strip users? Well, it did to me, too. With some help from Electronics Incorporated, IPS presented a unique version of Almen test equipment, called the Aero-Almen gage, to the NASA staff. This gage is used in a similar manner to an Almen gage but it uses an aluminum strip called an Aero-Almen strip developed for the U.S. Air Force. Because the aluminum strip is not magnetic, it has to be held into place by a special hold-down block with four spring-loaded fingers.

After we realized that this was a better method of testing, we decided that the Almen strip method of intensity determination could be included with the original coupon visual inspection test. This would allow us to limit the maximum “peening” intensity as established by Aero-Almen arc height. Several coated aluminum coupons were then subjected to the blast. The blast pressure was then turned up for each test until the coupon showed signs of excessive etching and was determined to be a rejected coupon. The Aero Almen strips were then subjected to the same blast parameters and a measurement was made to determine the new maximum intensity and arc height acceptable on an Aero-Almen strip.

Strips are now blasted with every piece of flight hardware and a specific measurement and each strip is logged for that part—we have a permanent record of quality that will follow the flight hardware during its lifetime. The benefit of this new quality procedure was immediately apparent. The Aero-Almen strip, measured on a precision gage, provides a definitive measurement thus providing excellent process control capability.
Peening Solutions

automotive, aerospace and diverse applications

Applications Expertise • Proven Designs • Intelligible Controls • Repeatable Results

Wheelabrator serves the global peening industry with innovative solutions in:

• Wheelblast
• Automated Airblast
• Hybrid (Wheel and Air)

info@wheelabratorgroup.com

To request information please contact:

Wheelabrator Equipment Sales
(800) 845-8508 • (905) 319-7930

Wheelabrator Parts, EMP and Service
(800) 544-4144 • (706) 884-8884

www.wheelabratorgroup.com
Isotropically for Surface Integrity and Part Performance

Authors are members of the SME-DESC Technical Group:
David A. Davidson, Deburring/Surface Finish Specialist;
Jack Clark, Applications Engineering Manager, ZYGO Corporation;
Dr. Michael L. Massarsky, President, Turbo-Finish Corporation

When presented with edge and surface finishing problems, many manufacturers continue to reach for solutions that rely on out-of-date, time-consuming and labor-intensive methods. It is still not unusual to see precision parts and critical hardware being manually handled and edge and surface finishing operations being performed with abrasive hand tools, or manually-controlled power tools that utilize coated abrasives or abrasive filaments. This situation often arises from insufficient planning and a lack of understanding on what will be required to render the manufactured part or component acceptable for consumer use or end-user application. At the root of the problem is a manufacturing and design engineering culture that considers its work done when the part comes off the machining center or the fabricating machine. Too often, part edge and surface condition is simply someone else’s problem. In many cases not much thought is given to the problem until production is in full swing and parts start to fail quality assurance standards because they have burrs or undesirable surface conditions that not only affect function and performance but send costs through the roof.

This is a situation that deserves and is getting an increasing amount of scrutiny. It is a subject repeatedly discussed at the newly-formed “Deburring, Edge-Finish, and Surface Conditioning Technical Group” sponsored by the Society of Manufacturing Engineers in Dearborn, Michigan. At one of the group’s monthly national teleconferences, Steven Alviti, a deburring and surface finish expert, summarized his experience this way:

“This group has been needed for a long time now. The sentiments expressed at the phone conference still hold true to this day. I face the same scenario time after time. The company develops a new product, they cost the product, they work out the productivity to decide what machinery they need to supply the demand, they spend $500,000.00 - $1,000,000.00 for CNC machinery, they get orders and start producing, they now have product to ship – but it has a burr! Now we get the call, after they have thrown five or six people at the cell with microscopes, exact-o-knives, files, sandpaper and worse, and have figured out that they are in a jam. Now we come up with a mechanical or automated solution, but it’s like pulling teeth to have them spend $10,000 or $20,000 on a solution that should have been part of the initial phase. Whatever this group can do to bring mass finishing into the initial stages of engineering will be a benefit to all involved.”

The costs of neglecting to consider deburring and surface conditioning in production planning and engineering can be – and often is – substantial. Frequently overlooked however, are the potentially serious problems that can develop from the ad hoc and interim solutions that are selected to deal with what now has become a manufacturing crisis. The manufacturers who resort to hard or manual finishing do not do so because of its cost. On a per-piece basis, it is by far the most costly method of handling the problem – but often it is the most obvious solution and the easiest and the quickest to implement. Hiring some less-skilled temporary employees, and arming them with hand tools to attack the problem, may not be very imaginative, but it is certainly much less strenuous from an engineering perspective than approaching the

budgetary, capital asset acquisition and purchasing processes for something as mundane as deburring and surface finishing equipment. The reason this problem persists into the 21st century is that there is a very imperfect understanding of the hidden and more serious cost this manual and uncontrolled approach imposes.

The first casualty of this manual approach is the investment the manufacturer has made, often in the millions, for precise and computer controlled manufacturing equipment. The idea behind this investment was to have the ability to produce parts that are uniformly and carefully manufactured to exacting specifications and tolerances. At this point, in too many cases, the parts are then handed off to manual deburring and finishing procedures that will guarantee that no two parts will ever be alike.

Continued on page 8
YOU’LL GET MORE
THAN JUST THE SURFACE TREATMENT
FROM
PROGRESSIVE

Progressive Technologies will treat you right. Our in-house engineers can meet any challenge, from high-tech to high-volume and across all process ranges. From cost competitive standard models to custom designed, automated systems, Progressive has the technology to meet your needs.

There's tremendous value beneath the surface of a Progressive system. We conduct testing and product validation at our plant, and invite you to qualify your system before it ships to you. Installation is seamless, with no unpleasant surprises. And if you need help later, we're on-call 24/7 with technical support, process troubleshooting, on-line diagnostics, and training.

Ninety-four percent of our customers order additional Progressive equipment. They've experienced the customized solutions, reliable operation, and responsive customer service that make Progressive systems the best value in the industry.

Treat yourself to high-tech, worry-free shot peening and blasting equipment. Call Progressive today.

Automated surface treatment machinery
- shot peening
- grit blasting
- waterjet cleaning
- thermal spraying

800.968.0871
www.ptihome.com
Moreover, the increased complexity and precision requirements of mechanical products have reinforced the need for accurately producing and controlling the surface finish of manufactured parts. Variations in the surface texture can influence a variety of performance characteristics. The surface finish can affect the ability of the part to resist wear and fatigue, to assist or destroy effective lubrication, to increase or decrease friction and/or abrasion with cooperating parts, and to resist corrosion. As these characteristics become critical under certain operating conditions, the surface finish can dictate the performance, integrity and service life of the component.

The role of mass finishing processes (barrel, vibratory and centrifugal finishing) as a method for removal of burrs, developing edge contour and smoothing and polishing parts, has been well established and documented for many years. These processes have been used in a wide variety of part applications to promote safer part handling (by attenuation of sharp part edges) improve the fit and function of parts when assembled, and produce smooth, even micro-finished surfaces to meet either functional or aesthetic criteria or specifications. Processes for developing specific edge and/or surface profile conditions on parts in bulk are used in industries as diverse as the jewelry, dental and medical implant industries on up through the automotive and aerospace industries. Less well known and less clearly understood is the role specialized variants of these processes can play in extending the service life and performance of critical support components or tools in demanding manufacturing or operational applications.

Industry has always been looking to improve surface condition to enhance part performance, and this technology has become much better understood in recent years. Processes are routinely utilized to specifically improve life of parts and tools subject to failure from fatigue and to improve their performance. These improvements are mainly achieved by enhancing part surface texture in a number of different, and sometimes complimentary, ways.

To understand how micro-surface topography improvement can impact part performance, some understanding is required of how part surfaces developed from common machining, grinding and other methods can negatively influence part function over time. The following factors are involved:

Positive vs. Negative Surface Skewness. The skew of surface profile symmetry can be an important surface attribute. Surfaces are typically characterized as being either negatively or positively skewed.

This surface characteristic is referred to as R_{sk}. (R_{sk} – skewness – the measure of surface symmetry about the mean line of a profilometer graph). Unfinished parts usually display a heavy concentration of surface peaks above this mean line (a positive skew). It is axiomatic that almost all surfaces produced by common machining and fabrication methods are positively skewed. These positively skewed surfaces have an undesirable effect on the bearing ratio of surfaces, negatively impacting the performance of parts involved in applications where there is substantial surface-to-surface contact. Specialized high energy finishing procedures can truncate these surface profile peaks and achieve negatively skewed surfaces that are plateaued, presenting a much higher surface bearing contact area. Anecdotal evidence confirms that surface finishing procedures tailored to develop specific surface conditions with this in mind can have a dramatic impact on part life. In one example the life of tooling used in aluminum can stamping operations was extended 1000% or more by improved surface textures produced by mechanical surface treatment.

Directionalized vs. Random (Isotropic) Surface Texture Patterns. Somewhat related to surface texture skewness in importance is the directional nature of surface textures developed by typical machining and grinding methods. These machined surfaces are characterized by tool marks or grinding patterns that are aligned and directional in nature. It has been established that tool or part life and performance can be substantially enhanced if these types of surface textures can be altered into one that is more random in nature. Post-machining processes that utilize free or loose abrasive materials in a high energy context can alter the machined surface texture substantially, not only reducing surface peaks, but generating a surface in which the positioning of the peaks has been altered appreciably. These “isotropic” surface effects have been demonstrated to improve part wear and fracture resistance, bearing ratio and improve fatigue resistance.

Residual Tensile Stress vs. Residual Compressive Stress. Many machining and grinding processes tend to develop residual tensile stresses in the surface area of parts. These residual tensile stresses make parts susceptible to premature fracture and failure when repeatedly stressed. Certain high-energy mass finishing processes can be implemented to modify this surface stress condition, and replace it with uniform residual compressive stresses. Many manufacturers have discovered that as mass finishing processes...
Robotic Shot Peening Machine for Turbine Blades

Rotary Indexing Machine for Automobile Parts

Shot Peening Machine for Strain Rods

Abrasive Blasting Machine for Cutting Tools

MEC SHOT BLASTING EQUIPMENTS PVT. LTD.
(An ISO 9001:2000 Certified Company)
Our Products are CE marked

Complete BLASTING & PEENING SOLUTION

Authorised Distributor of Electronics Inc.
Shot Peening Control

ALMEN GAGE • ALMEN STRIPS • MAGNA VALVE

ABRASIVE BLAST MEDIA
Whether you clean, descale, derust, deburr, deflash, texturize, etc., finish, shot peen or prepare surface for painting, coating, bonding, metal spraying, plating on parts of ferrous, non-ferrous, alloys, glass, stone, wood, plastic etc.

Aluminum Oxide
UREA
Nylon Shot
Steel Cut Wire

International Approvals:
ISO 9001:2000

MEC SHOT BLASTING EQUIPMENTS PVT. LTD.
E-279, M.I.A., Phase-II, Basni
JODHPUR-342 005 (India)
Ph.: +91 291 2740609
Fax: +91 291 2742409
E-mail: mecshot@sancharnet.in
Web: www.mecshot.com

Delhi: mecshotdelhi@airtelbroadband.in • Mumbai: mecshotbb@vsnl.net
Secundarabad: mecshothyd@satyam.net.in • Bangalore: msbblr@vsnl.com • Chennai: supersify@sify.com
Fall 2006 9 The Shot Peener
have been adopted, put into service, and the parts involved have developed a working track record, an unanticipated development has taken place. Their parts are better—and not just in the sense that they no longer have burrs, sharp edges or that they have smoother surfaces. Depending on the application, they last longer in service, are less prone to metal fatigue failure, exhibit better tribological properties (translation: less friction and better wear resistance) and from a quality assurance perspective, are much more predictably consistent and uniform. The question that comes up is why do commonly used mass media finishing techniques produce this effect? There are several reasons. The methods typically are non-selective in nature. Edge and surface features of the part are processed identically and simultaneously. Additionally, they consistently develop beneficial compressive stress equilibriums.

Continued on page 8

These alterations in surface characteristics often improve part performance, service life and functionality in ways not clearly understood when the processes were adopted. In many applications, the uniformity and equilibrium of the edge and surface effects obtained have produced quality and performance advantages for critical parts that can far outweigh the substantial cost-reduction benefits that were the driving force behind the initial process implementation.

This assertion has been affirmed by both practical production experience and validation by experiment in laboratory settings. David Gane and his colleagues at Boeing have been studying the effects of using a combination of fixtured-part vibratory deburring and vibratory burnishing (referred to by them as “Vibro-peening” or “Vibro-strengthening”) processes to produce (1) sophisticated edge and surface finish values and (2) beneficial compressive stress to enhance metal fatigue resistance. In life cycle fatigue testing on titanium test coupons, it was determined that the vibro-deburring/burnishing

Figure 5. Centrifugal barrel machines such as these can produce exceptional edge and surface finishes in very short cycle times. Accelerated process effects can be developed because of the high speed interaction between abrasive media and part surfaces, and because media interaction with parts are characterized by high pressure by virtue of the high centrifugal forces developed in the processes. Smaller turbine blades can be processed in the 5 x 8 inch compartments in the 12-liter capacity machine shown to the left. Larger centrifugal machines such as the 220 liter or 330 liter capacity machine shown to the right can handle much larger parts as the barrel compartments are as much as 42 inches in length. Larger parts processed in this type of machinery can be processed one at a time within the barrel compartment suspended within the media mass or be fixtured. Barrel compartments can be divided into processing segments to accommodate more than one part.

Figure 6. Increasingly sophisticated measurement methods are now utilized to characterize surface textures so that a more accurate correlation between surface texture and its possible effect on ultimate part performance and longevity can be drawn. Especially useful is the 3-D surface texture characterization, such as the one shown in the upper right hand graphic of this grouping. Optical interferometry and computer enhanced graphics make it possible to visualize potentially detrimental surface characteristics produced by various manufacturing methods. The lower left item of each set illustrates the type of surface texture characterization of a finely ground roller bearing. As the 3-D graphic clearly shows this is a dysfunctional surface, from both a wear resistance and a metal fatigue resistance perspective. In this case, both the predominant surface peaks and lack of isotropy (redundant surface texture pattern) are going to contribute to premature part failure and suboptimal performance. It should be understood that these types of surface characteristics are not necessarily the result of mistakes or errors, almost all common types of machining, grinding or fabrication methods produce surface characteristics of this nature. When correctly implemented, mass finishing processes are capable of correcting these inherent surface flaws by developing plateaued isotropic surfaces while simultaneously developing beneficial compressive stress and a stress equilibrium to the entire part. Graphic courtesy of Jack Clark, Zygo Corporation.

Figure 7. The 3-D color characterization shown in the earlier graphic in this series is based on a surface characterization of the “AS GROUND” photo and microphotograph shown here. The graphics in this set have been arranged for ease of comparison in terms of differentiating surface characteristics produced by various manufacturing methods. The lower left item of each set illustrates the type of surface developed from mass finishing methods (in this case centrifugal barrel finishing [CBF]) contrasted with grinding or machining methods. Clearly evident in the SEM (scanning electron microscope) microphotographs is the fact the centrifugal barrel process has been able to create a surface that has been plateaued (surface peaks and asperities have been leveled for much higher bearing load capabilities and reduced crack propagation) and is isotropic in nature (a non-directional surface pattern). These desirable surface characteristics have been developed concurrently with a highly advantageous stress equilibrium effect in a single process. Photos courtesy of Jack Clark, Zygo Corporation.
Get less from your blast cleaning machine with the MagnaValve™

- **Less media usage**
 The MagnaValve provides an efficient use of media for less media costs, less disposal fees, less media in landfills.

- **Less maintenance**
 The MagnaValve is easy to install and maintain. Maintenance crews love it.

- **Less operator time**
 Repeating or establishing a good set-up is easy because the MagnaValve lets you document flow rate and our controllers are user-friendly.

- **Less downtime**
 The MagnaValve has no moving parts; it’s much more reliable than a mechanical valve.

- **Less energy consumption**
 A MagnaValve can reduce the load on a large horsepower motor and thereby reduce energy consumption.

- **Less guessing**
 A custom shot flow program can be created for each product or product type.
The Shot Peener

cycles

The author wishes to acknowledge the PROCEEDINGS, 7th International Deburring Conference, Berkeley, CA. Massarsky, M. L., Davidson, D. A., “Turbo-Abrasive Machining, CODEF

intensity peening had climbed to values between 5-7 \(\mu \text{m} \) (R\(_{\text{a}}\)). Spin pit tests on turbine disk components processed with the method showed an improved cycle life of 13090 ± 450 cycles when compared to the test results for conventionally hand deburred disks of 5685 ± 335 cycles, a potential service life increase of 2 – 2.25 times, while reducing the dispersion range of cycles at which actual failure occurred. Vibratory tests on steel test coupons were also performed to determine improvements in metal fatigue resistance. The plate specimens were tested with vibratory amplitude of 0.52 mm, and load stress of 90 MPa. The destruction of specimens that had surface finishes developed by the Turbo-Finish method took place after:

$$3 - 3.75 \times 10^4 \text{ cycles}$$

a significant improvement over tests performed on conventionally ground plates that started to fail after:

$$1.1 - 1.5 \times 10^4 \text{ cycles}.$$

SUMMARY:
Mass media finishing techniques (barrel, vibratory, centrifugal and spindle finish) can be used to improve part performance and service life, and these processes can be tailored or modified to amplify this effect. Although the ability of these processes to drive down deburring and surface finishing costs when compared to manual procedures is well known and documented, their ability to dramatically effect part performance and service life are not. This facet of edge and surface finish processing needs to be better understood and deserves closer study and documentation. Industry and public needs would be well served by consortium of partners at the industry, university and governmental agency levels capable of researching all aspects of surface texture and surface conditioning related to part functionality, performance and service life. At the time of this writing, possible FAA intervention bringing the use of manual deburring techniques on commercial aircraft engine components under closer control are apparently being considered.

ACKNOWLEDGEMENTS: The author wishes to acknowledge the technical assistance of the following members of the Society of Manufacturing Engineers DESC Technical Group [Deburring, Edge-Finish, Surface Conditioning]. Dr. Michael Massarsky, Turbo-Finish Corporation; David H. Gane, Boeing; Edward F. Rössman Ph. D., Boeing; Jack Clark, ZYGO Corporation; LaRoux Gillespie, PE, CMfgE, Honeywell; Rodney Grover, Society of Manufacturing Engineers.

REFERENCES:

Figure 8. This large power generation turbine blade was made utilizing 6-axis machining technology. Centrifugal barrel finishing technology was used to clear and blend in the milling cutter paths and then develop very refined and burnished isotropic surfaces in the foil area.

Figure 9. This large aircraft engine turbine disk has been processed with the Turbo-Finish method. This dry abrasive finishing method has been successful in bringing mass media finish economics to large complex rotationally oriented parts while simultaneously developing significant compressive stress. In addition to the uniform and consistent edge contours developed, the method also produces highly sophisticated isotropic surface finishes by radically altering the character of the as-machined or as-ground surface finish. PHOTO courtesy Dr. Michael L. Massarsky, Turbo-Finish Corporation

Figure 10. These titanium test coupons show a before and after example of mass finishing processes being used to blend in milling cutter paths. Transforming the positively skewed surface profiles of machined parts into parts with isotropic and negatively skewed surface characteristics can be an important element in any program where surface improvements are being developed to improve wear resistance and metal fatigue resistance on critical parts.
When your ideas take off, we're there for you

We offer surface treatment solutions to keep you in the lead.

Not every supplier is ready to go above and beyond. But with our state-of-the-art research center and demonstration workshop, we can take your project to the next level by providing an original solution backed by ongoing and full scale testing. Most of all by listening to you, we can help to make your projects soar and respond to your unique needs.

This is how we achieve new heights in performance.

Saint-Gobain ZirPro, your partner in high performance surface treatment ceramic media. Produced by electrofusion and used mainly for clearing and finishing operations or shot peening. Zirlast and Zirshot can be used either in wheel, turbine or air compressed equipment.

www.zirpro.com
KSA Develops New Automated Peen Forming for Wing Skins

by Axel Friese, KSA

Founded as a spin-off of the Institute of Metal Forming (IBF) at Aachen Technical University in December 1993, KSA (Kugelstrahlzentrum Aachen) is a German limited company which specialises in Automated Peen Forming (APF) solutions and robot-aided process automation for the aeronautic and aerospace industries. Most of the company’s key personnel, including its CEO Dr. Frank Wüstefeld, came to the company from IBF, bringing with them invaluable knowledge of the latest research on shot peening and of new technological developments in the industry. The company’s mission is to support customers worldwide in implementing automated shot peening processes. It has consciously adopted an “open” transparent business policy, providing customers with process documentation and unlimited access to all relevant peening and quality control data.

Ariane 5: KSA’s ‘launch’ customer

APF launched as a contract peening service for Ariane 5 KSA has rapidly made a name for itself in the shot peening industry through its development and application of CNC-controlled software for peen forming. After a development and certification phase, the company achieved its commercial breakthrough in 1999/2000 when MT Aerospace AG placed substantial orders for tank segments for the European space launcher Ariane 5. In 2001, KSA started operating its own machine for robot-aided peen forming at its site in Aachen. A second facility is a 7-axis, CNC-controlled machine located at the nearby university institute. The company has already peen formed more than 2000 aerospace panels on a contract basis in Aachen, notably for the Ariane space launcher and for Airbus aircraft.

Implementing APF at Airbus site

A further breakthrough occurred when Airbus Germany needed final peen forming to be carried out to its new laser-welded fuselage panels for the A 380 and approached KSA as a potential partner in 2001. The peen forming process needed to be flexible enough to accommodate design changes and also had to be applicable to a wide range of panel sizes. Above all, it had to be automated and integrated directly into production in a 3-shift operation at the Airbus plant. After successfully completing a 9-month joint testing programme, KSA peen formed more than 100 qualification parts and serial shells in Aachen. At the same time, a large-scale peening machine was developed and built by a subcontracted machine manufacturer. The machine was then installed at the Airbus plant in Nordenham, Germany in November 2003 and programmed by KSA to peen form 8 different types of fuselage shell. APF has proven to be such a reliable and efficient process that it has already been extended to other aircraft models such as the Airbus A 318, A 340 and the new A 350.

The implementation of APF at Airbus can be seen as a first benchmark for shot peen forming as a state-of-the-art industrial process, i.e. an entirely automated process which is fully integrated into the production chain, thus contributing effectively to the reduction of throughput times and to lower costs. KSA continues to work closely with Airbus and is

Continued in page 16
The advantages of Premier Cut Wire Shot

- **Highest Durability** - Due to its wrought internal structure with almost no internal defects (cracks, porosity, shrinkage, etc.) the durability of Premier Cut Wire Shot can be many times that of other commonly used peening media.

- **Improved Consistency** - Highest consistency from particle to particle in size, shape, hardness and density compared to commonly used metallic media.

- **Highest Resistance to Fracture** - Cut Wire Shot media tends to wear down and become smaller in size rather than fracture into sharp-edge broken particles which may cause damage to the surface of the part being peened.

- **Lower Dust Generation** - Highest durability equals lowest dust levels.

- **Lower Surface Contamination** - Cut Wire Shot doesn’t have an Iron Oxide coating or leave Iron Oxide residue - parts are cleaner and brighter.

- **Improved Part Life** - Parts exhibit higher and more consistent life than those peened with equivalent size and hardness cast steel shot.

- **Substantial Cost Savings** - The increase in useful life of Premier Cut Wire Shot results in savings in media consumption and reclamation, dust removal and containment, surface contamination and equipment maintenance.

The advantages of the Premier Shot Company

Premier Shot is proudly produced in the United States. It is manufactured to meet today’s high quality shot peening standards and is used in automotive and aerospace applications worldwide.

Premier Shot Company: 1203 West 65th Street • Cleveland, Ohio 44102
KSA DEVELOPS NEW APF FOR WING SKINS
Continued from page 14

Airbus A 380, reference for APF implementation at customer site

responsible for full APF support, including process development, system integration and service, program transfer, back-up capacities and so forth.

Co-operation with AeroSphere Inc. on APF4WINGS
With experience and know-how of this kind at its disposal, it was only logical that KSA should look for further applications of automated peen forming. A first contact between Frank Wüstefeld and the management staff of the Canadian company AeroSphere Inc. revealed a similar mindset with regard to the desirability of using automated peen forming for wing skins.

The AeroSphere Inc. team has many years of experience in the manual forming and fabrication of wing skins for corporate jets and regional aircrafts. They have participated in the development of over 15 different wing projects in collaboration with various aircraft OEMs. Their mission is to improve peen forming technology and to achieve higher repeatability and control standards. After an analysis of the technology available around the world, they concluded that KSA was the best company for a partnership. Not only was it already peen forming components with an excellent repeatability rate, it also had next-generation technology and a highly-qualified staff at its disposal, making it an ideal partner for developing new peen forming technology and extending it to aircraft wing forming. KSA and AeroSphere have now developed a detailed APF program based on AeroSphere’s wing forming expertise and KSA’s references for shot peening process control and automation (APF4WINGS).

“Now we are in a position to transfer our standard-setting APF to wing skin forming. Both aircraft OEMs and wing suppliers will profit from this situation,” said Frank Wüstefeld.

AeroSphere believes that the manual peen forming process entails costly training and often results in serious health problems for the operators. According to AeroSphere, manual peen forming can, will and must be replaced—APF is the solution and an excellent value proposition to meet future aircraft design and fabrication standards.

First test programme on wing skin specimen
As of October 2006, the companies will work closely together on testing and perfecting the APF wing programme. This will initially take place in Aachen, where the process will be applied to small-scale wing skin specimen for corporate jets. Apart from the obvious advantages of APF4WINGS over manual peening such as control, efficiency, repeatability and reduced man-power dependency, the process will benefit from the latest shape-monitoring techniques and the possibility of using bigger shot of up to 10 mm / 0.39 inches. Bigger shot leads to improved surface conditions and reduces the need for sanding and surface finishing.

Following the first test phase, the intention is to use the knowledge and insight gained to apply APF to larger wing skins. As with the successful peen forming of fuselage panels on site for Airbus, it should be possible at a later date to integrate APF4WINGS directly into the production chain as a turn-key solution.

KSA has already worked very successfully with other partners to develop new peening. It has just completed a two-year trial phase at Rolls-Royce Germany to test its patented ISIC® - System (ISIC® = Integral Shot Intensity Control) for measuring shot velocity and distribution. By calibrating these values against Almen intensity, the system yields a computer-controlled measurement of shot intensity. The results of the two-year test period have been so convincing that Rolls-Royce Germany has now decided to integrate the ISIC® - System directly into its production process. KSA is extremely pleased about the successful development of this innovative technology, which is, incidentally, crucial for the inter-machine transferability of APF processes. The company is very optimistic that the exciting APF4WINGS proposition will be just as rewarding for the aircraft wing industry.

KSA is certified in accordance with the latest DIN EN ISO 9001 – 2000 and DIN EN 9100 for “Controlled Shot Peening” and “Automation Solutions”. It also holds several patents related to process control and automated peen forming (APF).

For further information, please, contact:
Axel F. E. Friese
KSA Kugelstrahlzentrum Aachen GmbH
Weststraße 22-24
D-52074 Aachen
Tel: ++49 / 241 / 87 97 95-7
axel.friese@ksa.de.com
www.ksa.de.com

APF4WINGS – KSA’s proposition for future wing skin forming
World’s Finest Almen Gage meets:

- SAE J442
- AMS-S-13165
- AMS 2430
- AMS 2432

- In compliance with AMS-S-13165 and other industry-approved specifications that require use of precision steel balls for support

- Patented magnetic grip and end stops (U.S. Patent No. 5,297,418)

- An easy-to-read display

- .0001" (.001 mm) resolution

- SPC data port

- Convenient battery replacement

- Calibration blocks are available individually or as a kit (U.S. Patent No. 5,780,714)

- One-year warranty and continued product support

The World’s Finest Almen Gage meets:

- SAE J442
- AMS-S-13165
- AMS 2430
- AMS 2432
The Customer’s Problem
A manufacturer of aircraft propellers was shot peening the shank, the portion of a propeller blade that mounts to the hub. The hub is the center section of the propeller, which carries the blades and is attached to the engine shaft. They shot peen the shank to maximize its fatigue life. It goes without saying that the propellers perform a function critical to the operation of the aircraft. Therefore, shot peening specifications must be followed precisely. The customer’s production included three different sizes of propeller blade sets ranging in size from three feet to four feet in length. The aircraft manufacturer’s specification called for shot peening to a specified intensity on the Almen-A strip. The propeller maker shot peened one size propeller at a time.

They were using an old cabinet, which had one oscillator and two blast guns, and their procedure called for a unique set-up for each size. That meant they needed to readjust the blast guns each time they changed from one propeller set to another. Setting the guns for each propeller set was critical as the customer had to be especially concerned about maintaining peening intensity. The old cabinet had no media flow control, necessitating painstaking attention to detail and monitoring for each set. A shank that fails has catastrophic consequences. The customer reported an estimated 400 hours per year on indirect labor changing from one set up to another.

The ZERO Solution
The ZERO automated solution was a special four feet by four feet by eight feet tall cabinet fabricated of 3/8-inch plate steel and rubber lined to withstand the barrage of steel shot. The cabinet has double opening doors in front for easy access to the cabinet interior for placing the parts on and removing them from the fixture.

The ZERO cabinet, sized to suit the range of parts, and painted a customer-specified color, incorporates special time-saving features. What differentiate this machine from its predecessor are its six guns, and simple but sophisticated controls. The cabinet has two oscillators and a total of six guns. Only two guns operate at a time; each set of two is appropriately positioned for a particular propeller set. So, simply by turning on each set of two guns and turning off the others, the set up is complete. Making this possible is at the heart of the new system, its PLC controls. They control the air to the guns, the media on-off from the shot gates that open and close to feed media to the guns, the oscillator speed, as well as the recovery equipment. And because the manufacturer’s specification called for the steel shot to be gravity fed to the blast guns, the ZERO cabinet incorporates this out-of-the-ordinary feature. Since the PLC controls the set up for each of the three propeller sets, the changeover requires no other adjustment.

This cabinet not only saves the company 400 labor hours per year, but also eliminates the need for them to process larger-than-needed batches of product to reduce the labor cost associated with the changeover.

Operation of the ZERO cabinet is simple. For each propeller size, the appropriate fixture is put in place and the PLC is set to turn on and off the guns for the appropriate blast cycle for the particular size propeller blade. Controls also include a limit switch that controls the length of the oscillator stroke. The oscillator movement slows for the shot peening and has a rapid-traverse mechanism to return to the home position to minimize processing times. The cabinet also includes MagnaValve shot flow controllers, a vibratory classifier, and a level sensor with indicators for low-media and full conditions. These indicators prevent the system from running out of media and from overfilling the hopper. Media recovery is handled with a screw conveyor and a bucket elevator to carry the shot to the top of the vibratory separator. From there the shot cascades through a two-screen vibratory classifier. And from there another bucket elevator refills the hopper, mounted above the cabinet for gravity feeding of the guns.

The vibratory classifier is especially critical to maintaining the proper operating mix to keeping the peening intensity within spec. The customer supplied their own dust collector. This new cabinet system significantly reduces indirect labor costs for the company and is easier to operate. Testing is minimized; now at prescribed intervals, the operator sends an Almen block through the cabinet and logs the results. With the cabinet’s sophisticated controls, peening intensities are easier to maintain resulting in a more efficient and productive operation.
PREVENT PROBLEMS BEFORE THEY HAPPEN WITH RESIDUAL STRESS MEASUREMENT

Take advantage of Proto technology—the fastest residual stress measurement systems that consistently outperform the competition. For over 25 years, Proto has been providing systems and measurement services for aerospace, automotive, power generation, medical and other manufacturing environments. Proto has the accuracy, speed and technology to keep your product perfect right from the start.

EXCELLENCE IN THE FIELD AND IN THE LAB

Proto's comprehensive line of laboratory and portable residual stress measurement systems ensure the best system is available to successfully perform RS measurements on your components.

RESIDUAL STRESS CHARACTERIZATION AT FAILURE CRITICAL LOCATIONS... WHERE IT COUNTS

Improve quality, enhance fatigue life, and ensure that surface enhancements are being applied correctly. Even complex geometries such as bores, holes and slots can be easily measured using our systems. Ensure that your components perform to their maximum potential with residual stress measurement.

Quantify your peening.
2007 Workshops
Mastering Shot Peening & Blast Cleaning

Singapore
March 13, 14
Orchard Hotel Singapore

Canada
Montreal, Canada / May 1, 2
InterContinental Hotel

United States
Tempe, Arizona / October 23, 24, 25
Fiesta Inn Resort

These intensive workshops will cover:
- the proper shot peening procedures as required by applicable specifications
- the products (air and wheel machines, nozzles, media, job shop services and more) that best meet your company’s needs
- how to control the process through media, intensity, coverage and equipment
- how to plot a saturation curve to determine intensity
- how to establish proper machine parameters to ensure correct stress profiles and fatigue life
- proper paperwork processes and recordkeeping
- how to pass an audit
- how to spot a machine malfunction
- machine maintenance
- the newest products and processes from around the world
- and much, much more

Group discounts are available - see registration forms in this magazine.

For more information, call 1-800-832-5653 or go to www.electronics-inc.com

Have a blast while you learn how to control your shot peening and blast cleaning processes. Since 1990, Electronics Inc. has conducted workshops in the United States, Asia and Europe for people like you—people that want intensive training in one of the most enjoyable and productive formats available. Call or visit our web site for more information.

1-800-832-5653
www.electronics-inc.com

Our courses are recognized by the FAA. If you are a FAA mechanic, call to learn how you can receive credit for taking our workshop.

Electronics Inc.
Shot Peening Control

56790 Magnetic Drive,
Mishawaka, Indiana 46545 USA
According to SAE J441 VDFI 8001 DIN8201 AMS 2431 MIL-S-13165C

Found in 1998 and now become the good manufacturer in the field of cut wire for shot peening and shot blasting:

- Carbon steel cut wire shot HRC45-55/HRC55-60
- Stainless steel cut wire shot SUS304/302/M30
- Zinc cut wire shot
- Copper cut wire shot
- Aluminum cut wire shot

Dafeng Daqi Metalgrinding Material Co., Ltd

Add: Jinyi Road, Dafeng Eco. & Tec. Development Area, Dafeng City, Jiangsu Province 224100 China
Tel: 86-515-3859977 86-515-3793888
Fax: 86-515-3793000 86-515-3859000
Web: www.daqiabrasive.com
E-mail: Kayneskhu@vip.163.com
Engineered Abrasives
Manufacturers of the Finest Blast Finishing and Shot Peening Systems

Patented 72" Index Unit with Shot Flow Controls, Sweco, Bucket Elevator, 12 Nozzles and 16 Spindles. Designed for automotive high-volume.

All fixtures
A-2 tool steel
62-64 Rockwell.

Engineered Abrasives index units are the most durable machines on the market today with all our special features.

48" Manual Shot Peen Index Unit, 4 Nozzles, MagnaValves, Sweco with low profile design and Bucket Elevator. All tooling fixtures and gun rods A-2.

QS-9000 Certified Job Services
Since its inception in 1935, Engineered Abrasives has honored countless requests to design and fabricate abrasive systems and equipment that will keep pace with the latest technology.

We can analyze and accommodate any situation to meet your production requirements. All design and fabrication is performed at Engineered Abrasives headquarters in Alsip, Illinois. Visitors are welcome at our plant; we invite you to see our equipment in operation. Call or write today for more information, or visit our web site at www.engineeredabrasives.com.

11631 S. Austin Avenue • Alsip, Illinois 60803 USA

Telephone: (708) 389-9700 or (773) 468-0440 Fax: (708) 389-4149 E-mail: mwern@engineeredabrasives.com
Principles of Spiral Gravity Classification by David Kirk

INTRODUCTION
Gravity separation of shot particles is of fundamental importance for peening. From a commercial viewpoint it is the basis of several methods for separating acceptable from unacceptable shot shapes i.e. classification. The commonest such method is probably spiral gravity separation. This method has a long and successful history and is used in a number of industries on a variety of particle types.

In use, shot particles can either fracture or wear. Fracture is the primary cause of a particle adopting an unacceptable shape. Wear, on the other hand, tends to improve the shape of particles – conditioning of cut steel wire being a classic example. The primary objective, therefore, is to separate broken particles from unbroken particles.

The fundamental principles of spiral gravity separation are analyzed in this paper. Fig.1 illustrates the essence of the situation. A sphere placed on a downward slope gains a rolling forward velocity. The downward slope is also inclined towards the central axis so that an inward force, F_{INWARD}, acts on the rolling particle.

This gravitational force increases with the slope angle, β. An opposing outward centrifugal force, F_{OUTWARD}, acts on the sphere. The centrifugal force increases with the square of the forward rolling velocity. If the outward force is greater than the inward force then the sphere will move outwards on the path shown. The dotted line indicates a constant track of radius R which would be followed if the two forces remained equal to one another.

This article analyses the geometrical and physical features of spiral gravity separation. Several simplifying assumptions are used in order to keep the applied mathematics at a digestible level. The motion of even a single particle pulled by gravity down a spiral slope is difficult to analyze, especially if the particle can have an arbitrary shape. Friction and energy losses further complicate the picture. Millions of particles are involved during spiral gravity separation. The analysis presented here does, however, allow quantitative assessments to be made of the classification process.

GRAVITATIONAL ACCELERATION DOWN A FLAT SLOPE
Spherical and near-spherical shot particles will roll down a steep slope at an increasing velocity under the action of gravity. Particles that can be classed as being unacceptable will tumble down a slope and can achieve a substantial forward velocity.

(a) Rolling
Fig.2 is an illustration of a sphere which generates increasing forward and rotational velocities as it rolls down a steep slope whose angle is α. The acceleration, a, is related to gravitational acceleration, g, by the relationship that:

$$a = S\cdot g \cdot \sin\alpha$$

where S is the shape factor for the rolling body, having a value of $5/7$ for a perfect sphere and having lower values for any other shape.

$2/7$ corresponds to the fraction required to generate rotational energy.

The particle's forward velocity, v, increases with the distance travelled, s, under constant acceleration. For a particle starting at rest the governing equation is that:

$$v^2 = 2 \cdot a \cdot s$$

Substituting the value of a from equation (1) into (2) yields the important equation:

$$v^2 = 2 \cdot S \cdot g \cdot \sin\alpha \cdot s$$

The time, t, that a sphere takes to roll a given distance is given by:

$$t = \frac{2s}{v}$$

(b) Tumbling
Tumbling motion depends on the precise shape of the particle, slope angle and on interaction with other particles. Stationary particles on a slope will be struck by another descending particles causing...
SHOT PEENING
Cleaning, Deburring and Finishing

Looking for ways to enhance productivity?
Count on ZERO to turn
Our Experience into Your Solution!

- Manual & Automated Dry Blast Systems
- Wetblast Cabinets
- Tumble Blasters
- Options & Accessory Packages

For information and your nearest distributor visit
www.clemcoindustries.com

Mention this ad and receive a free gift from Clemco Industries Corp.

©2004 Clemco Industries Corp.

CONDITIONED CUT WIRE FOR AEROSPACE
Can't find any reason not to use TOYO's CCW !!!

SAE AMS 2431 SAE J441
MIL-S-13165C DS0TF11

UNIFORMED SIZE
ENVIRONMENTAL
UNIFORMED PEEING EFFECT
LONG LIFE
COST REDUCTION

ISO9001 & ISO14001

TOYO SEIKO CO., LTD.

JAPAN

TEL. +81-567-52-3451 FAX. +81-567-52-3457
URL http://www.toyoseiko.co.jp E-mail sales@toyoseiko.co.jp
them to make further progression. All this makes the dynamics of the motion fiendishly complicated. Simple experiments can, however, determine the important characteristic features of tumbling motion. Consider, for example, a wooden plank inclined at predetermined angles (by leaning against a wall) together with a miscellaneous collection of irregular shapes. With the plank inclined at an angle of 45˚ every shape tumbles down the slope with increasing velocity. At an inclination of 20˚ none of the irregular shapes will move at all. For each shape there is a critical angle (“Angle of Repose”) above which tumbling will be initiated. A slightly more complicated experiment involves a hard plastic sheet supported along one edge. The weight and flexibility of the thin sheet yields a slope of decreasing angle – as shown in fig.3.

An irregularly-shaped particle placed at position 1 will always tumble down the slope, but will slow down at low angles and come to rest at some position such as 3. Position 3 increases with increase in the size of the irregular particle – for a given shape. This effect is equivalent to the well-known general observation that ‘larger rocks fall further than smaller rocks’. When initially placed at position 2, however, the particle remains stationary – the corresponding angle generally being called the “angle of repose”.

GEOMETRY OF SPIRAL SEPARATORS
Fig.4 illustrates the magnitude of the problem that has to be addressed when considering the geometry of industrial spiral gravity separators. The characteristic features are a steep downward slope where the helix is attached to a central vertical column and a much shallower slope at the edge of the helix. For the separator shown, there are five concentric ‘left-handed’ helix slopes which are fed with shot independently.

One effective way of gaining a quantitative insight into spiral separator geometry is to consider the construction of a simple model separator. All that is needed is a cardboard disc, with a hole, glue and a vertical tube. Fig.5 shows the required shape of the disc.

Having made the cut along AB if we lift up the right-hand edge relative to the left-hand edge we have generated a ‘right-handed’ helix. The term ‘right-handed’ comes from the similarity with a screw that progresses inwards if turned clockwise by a right-handed person. Conversely lifting up the left-hand edge generates a ‘left-handed’ helix. As we continue to displace the edges the inner diameter, \(D_1 \), decreases until it grips a vertical tube of diameter D along a helical path, see fig.6. The cardboard helix can then be glued in position to complete the model.

Quantification of the parameters involved in spiral separator geometry only requires the application of basic mathematics. The helical path, P-H, shown in fig.6 is the hypotenuse of a right-angled triangle, see fig.7. \(AB^2 = AC^2 + BC^2 \). If the required slope angle \(\alpha \) is to be 45˚ then the pitch has to be equal to the cylinder circumference i.e. \(AC = BC \), so that \(AB = AC\sqrt{2} \). Now the helical path length is the circumference of the hole shown in fig.5. Hence, for a 45˚ inner slope (see fig.4, blue angle), \(D_1 \) is given by \(D\sqrt{2} \) where \(D \) is the diameter of the supporting cylinder shown in fig.6. The circumference \(BC = \pi D \) so that the pitch is then also \(\pi D \) and the helical path length is \(\pi D\sqrt{2} \).
Custom Build Shot Peening & Blast Machinery

IPS...
Innovative Peening Systems
...because your part is the most important part

Innovative Peening Systems
2150 Boggs Road, Suite 400
Duluth, Georgia 30096

Telephone: (770) 497-9552
Fax: (770) 497-0393
Web: www.innovativepeening.com
Email: info@innovativepeening.com

Also available:
• Job shop services
• Rebuild and rental programs

Dual media 14 nozzle shot peen system
The outer edge of the sheet forms another helix with the much longer path length of πD_0 (see fig.5). This helix has a slope that depends on the magnitude of D_0 and the pitch. As an example if the cylinder diameter is 100mm, the formed spiral diameter is 500mm and a 45˚ inner slope is involved then the downward slope of the outer edge would be 11.3˚ (see fig.4, yellow angle). The formed spiral would also slope inwards towards the supporting cylinder. This is the important angle β of fig.1 and is given by:

$$\tan \beta = \frac{\pi D_o}{2(D_o-D_i)}$$ \hspace{1cm} (5)

where D_i is the cylinder diameter and D_o is the formed helix diameter.

For the previous example of $D_i = 100$mm and $D_o = 500$mm then $\beta = 21.4^\circ$.

Commercial separators usually have an added geometrical feature – a steady increase in the radius, r, of the formed helix – without affecting the steep downward slope adjacent to the supporting cylinder. The shape of the blanked-out sheet elements is then as shown in fig.8.

Fig.8 Variable radius, r, of helix element.

INWARD AND OUTWARD FORCES ON ROLLING SHOT PARTICLES

(a) Inward force

The inward force on a downward rolling shot particle is constant for a given inward slope angle β. This force is called a “centripetal force” (because it acts inwards). Since force is equal to mass multiplied by acceleration we have that the centripetal force, C_r, is given by:

$$C_r = \text{mass}.g.\sin \beta$$ \hspace{1cm} (6)

A steep inward angle, β, is maintained for the first revolution of the helix spiral (see fig.4) in order to constrain the downward path of all shot particles to be around the centre cylinder. Thereafter the outer diameter of the spiral D_o increases which decreases the value of β.

(b) Outward force

As rolling particles progress in a circular path around the central cylinder (as well as progressing downwards) they become subject to an outward centrifugal force, C_r. The corresponding outward acceleration is equal to $\frac{\sqrt{r}}{r}$, where v is the particle’s forward velocity and r is the radius of the circular path. Rolling particles increase their velocity as they travel down the helix becoming subject to a rapidly increasing outwards force since:

$$C_r = \text{mass}. \frac{v^2}{r}$$ \hspace{1cm} (7)

(c) Net outward acceleration of rolling shot particles

Fig.9 indicates the opposing forces acting relative to a steep helix surface. The net force determines whether the particle will move outwards or whether it will move inwards. C_r acts perpendicular to the cylinder axis so that it has to be resolved along the surface in order to directly oppose C_r. The net force on the particle is therefore $C_r \cos \beta - C_r$. For large values of β the net force tends to be inwards.

Fig.9 Radial forces acting on descending spherical particle.

The particle mass is the same for both forces. Hence, using equations (6) and (7), the net acceleration, a_{net}, becomes:

$$a_{net} = \cos \beta \frac{v^2}{r} - g \sin \beta$$ \hspace{1cm} (8)

The effect of net radial acceleration on a descending, rolling, shot particle is illustrated in fig.10.

A particle on ‘section 1’ is subject to a large inward acceleration (shown as a red vector arrow) so that it is pressing against the support cylinder. As the particle generates downward velocity the consequential centrifugal force reduces the inward acceleration component so that when it reaches section 4 there is zero radial acceleration. Thereafter the net acceleration is outwards so that the particle moves further and further away from the support cylinder. At section 7 it has moved over the edge and is collected separately (from ‘reject’ particles).

TUMBLING REJECT PARTICLES

Particles that are destined to be rejected also generate substantial downward velocity. This, in turn, induces a centrifugal force. The crucial difference is that the downward acceleration is rapidly reduced to zero – because outward radial movement reduces the downward slope for the particle. As a consequence, irregular particles do not generate sufficient velocity, and therefore net radial acceleration, to move them outwards and over the edge of a helix. Hence, these ‘reject’ particles can be collected separately at the bottom of each helical slope.

As noted previously, large irregular particles tumble faster than small irregular particles. This characteristic is accommodated in commercial separators by using larger diameter helixes for larger grades of shot. With larger diameters the average ‘β angle’ is reduced and radial travel distances increased, providing greater obstacles for outward-moving, larger, irregular particles.

Fig.10 Schematic ‘tree’ of helix sections showing outward movement of a descending spherical shot particle.

Continued on page 30
Where can you find answers to your heat treating problems?

HTS membership.

Ever tried to straighten out a problem between a material supplier and heat treater when both are pointing at the other guy?
Ever had a good part come back from heat treating distorted or with the wrong properties?
Ever wonder why a part or die just doesn’t seem to work right, or try to figure out why a part costs so much?

HTS membership has the answers.
The ASM Heat Treating Society, the world’s largest society for heat treaters, has you covered with time-proven solutions that you can apply TODAY and new ideas that will help you TOMORROW.

PRINCIPLES OF SPIRAL GRAVITY CLASSIFICATION
Continued from page 28

INPUT AND OUTPUTS
Controlled input of shot at the top of a spiral classifier is essential for its effective operation. Each spiral can only accept a very low rate of shot input. Fig.11 indicates one commercial solution to this problem. Shot is fed via a simple gate valve onto a cone which distributes the flow to five separate spirals. Alternative solutions are to employ a MagnaValve®, rather than a gate valve, to accurately control the shot flow or to use a vibrating inclined feed spout.

Fig.11 Cone distribution of shot to five separate spirals.

The output from the spiral separator consists of separate streams of acceptable and rejected shot particles. Fig.12 shows an example of output separation for a commercial unit.

Fig.12 Segregation of acceptable and rejected shot fractions.

FREE Almen Saturation Curve Solver Program
Get the program developed by Dr. David Kirk
Request the program at:
http://www.shotpeener.com/learning/solver.htm

Over 483 copies have been downloaded!
Introducing:
www.shotpeener.com/buyersguide

Go to www.shotpeener.com/buyersguide and you can research and contact suppliers of the finest products and services in the surface finishing industry.

Category Sections in www.shotpeener.com/buyersguide

EQUIPMENT
110 Equipment, Almen Gages Holders Strips
120 Equipment, Dust Collectors
130 Equipment, Elevators, Conveyors Hoppers
141 Equipment, Media Classifiers, Sieves Particle Analyzers
142 Equipment, Media Classifiers, Magnetic Separators
143 Equipment, Media Classifiers, Screen Separators
144 Equipment, Media Classifiers, Spirolators
150 Equipment, Pressure Pots
160 Equipment, Media Valves, Flow Sensors
165 Equipment, Metering Valves
170 Equipment, Parts Handling Robotic Manipulators

MACHINES
211 Machines, Air Peening
213 Machines, Water Peening
214 Machines, Wheel Peening
215 Machines, Wheel! Blasting, Portable
216 Machines, Air Blasting Portable
217 Blast Rooms
218 Machines/Machines, Misc., Ultrasonic
219 Machines, Misc, Vibratory
220 Machines, Co2 Blasting Machines
230 Machines, Cryogenic Blasting
231 Machines, Cryogenic Tumbling
233 Machines, Wet Blasting

MEDIA
310 Media, Aluminosilicate, Glass
311 Media, Cast, Aluminum Oxide
312 Media, Cast, Steel, Carbon Shot
313 Media, Cast, Steel, Stainless Shot
314 Media, Cast, Zinc Shot
315 Media, Cast, Steel, Ferrite Shot
316 Media, Cast Iron (Chilled Iron)
317 Media, Cast, Steel, Grit
318 Media, Cast Aluminum
320 Media, Ceramic
325 Media, Coal Slag
331 Media, Cut Wire, Aluminum
332 Media, Cut Wire, Steel, Carbon
333 Media, Cut Wire, Steel, Stainless

MEDIA con’t.
334 Media, Cut Wire, Zinc
335 Media, Cut Wire, Copper
336 Media, Cut Wire, Steel, Stainless Grit
340 Media, Glass Bead
343 Media, Crushed Glass
345 Media, Cut Wire, Nickel
350 Media, Balls, Steel
355 Media, Black Silicone Carbide
360 Media, Plastic
365 Media, Misc for Paint Stripping
370 Media/Media, Reclaim (Shot and Fines)
380 Media, CO2

PARTS
410 Parts, Masking tapes, molded forms etc.
420 Parts, Air Nozzles
425 Parts, Suction Guns
440 Parts, Wheel Parts, Blades, Liners, etc.
450 Parts, CO2 Blasting Accessories

SERVICES
510 Services, Computer Software and Programming
521 Services, Consultants, Machine Design
522 Services, Consultants, Tooling & Fixture Design
525 Services, Contract Job Shop Blast Cleaning
526 Services, Contract Job - Site Blast Cleaning
530 Services, Contract Job Shop Shot Peening
531 Services, Contract Job Shop Aircraft Paint Stripping
532 Services, Contract Job Shop Aircraft Painting
533 Services, Contract Job Shop Peen Forming
534 Services, Cryogenic Deflashing
535 Laser Peening
536 Services, Contract Job - Site Shot Peening
537 Services, Shot Peening Process Consultants
550 Services, Machine Rebuild, Refurbish, Upgrade
560 Services, Machine Repair, Field Service
570 Services, Testing Labs, Fatigue L-Life Testing
572 Services, 1-Testing Labs, X-Ray Analysis
580 Services, On-Site Training Audits, Consulting
585 Service, Heat Treating

Interested in a FREE listing in the Shot Peener Buyer’s Guide?

Call The Shot Peener at 1-800-832-5653 or 1-574-256-5001 or register online at www.shotpeener.com/buyersguide
An asphalt oval. 500 miles of left-hand turns. The tachometer hitting the redline. Split-second lane changes. What does it take to win races? These days the answer is technology.

Whether you’re a one-person machine shop, a tier supplier, OEM, or large race team, SME Motorsports Indianapolis delivers the manufacturing technologies that help you compete…and win!

• Meet industry-leading exhibitors
• Hear expert speakers
• Attend hands-on sessions
• Find new business opportunities

Visit www.sme.org/motorsports Or call (800) 733-4763
Wide Path Peening

FanBlast™ nozzles reduce media consumption, cut production time in half and eliminate hot spots common with conventional nozzles. The new FanBlast™ FBN-6CTC nozzle has a tungsten carbide liner — it's capable of handling metal shot for shot peening applications. The FBN-6CTC nozzle has a 1.3 inch (33 mm) wide peening path.

Double your production speed with the FanBlast Nozzle!

FanBlast peens with equal intensity across the full width of its blast pattern, compared to the ‘hot’ center that is unavoidable with conventional nozzles.

Cut cost, time and labor with FanBlast™ Nozzles.

FanBlast nozzles reduce media consumption, cut production time in half and eliminate hot spots common with conventional nozzles. The new FanBlast™ FBN-6CTC nozzle has a tungsten carbide liner — it’s capable of handling metal shot for shot peening applications. The FBN-6CTC nozzle has a 1.3 inch (33 mm) wide peening path.

Double your production speed with the FanBlast Nozzle!

FanBlast peens with equal intensity across the full width of its blast pattern, compared to the ‘hot’ center that is unavoidable with conventional nozzles.

Shot & Grit

AMASTEEL

FROM ERVIN INDUSTRIES

(800) 748-0055

Stainless Shot

AMACAST

FROM ERVIN INDUSTRIES

(800) 748-0055

THE BEST QUALITY

IN THE INDUSTRY
Coverage Products

Peenscan Pens NEW!
These pens make the Peenscan process as easy as using a magic marker. The Peenscan 220-2 pen should be used for softer base metals, softer shot and lower peening intensities. The 220-6 pen should be used for harder base metals, harder shot and higher peening intensities.

Fluoro-Finder III Shot Peen Liquid Tracer
Distributed exclusively by Electronics, Inc., Fluoro-Finder III Shot Peen Liquid Tracer meets requirements of AMS-S-13165 and is approved by General Electric, Engine Division, GE Spec D50T59 and Class A Rev S3. Fluoro-Finder III is available in liquid form (with Methyl Ethyl Keytone) or powder form (customer must add Methyl Ethyl Keytone). Fluoro-Finder III is manufactured by American Gas & Chemical Co. Ltd.

(Liquid form available only in the United States)

Almen Test Strip Holders
EI manufactures test strip holders in two designs: threaded or non-threaded.

Roto Peen Products

3M™ Roto Peen Flap Assembly
Uniform 330 shot size and a high strength resin bonding system contribute to consistent peening with this captive shot method. Flap assemblies provide portability and are effective for precision application of the shot peen. Flaps are available for mandrels 7212, 7211 and 7210.

Roto-flap on-site training also available. Contact us for more information.

Contact EI or the distributor nearest you for more information on our shot peening products.

Electronics Inc. also provides:

- On-site training
- Workshops conducted worldwide
- Online research library at www.shotpeener.com

Electronics Inc.
Shot Peening Control

1-574-256-5001 or 1-800-832-5653
56790 Magnetic Drive • Mishawaka, Indiana 46545 USA
www.electronics-inc.com

Fall 2006 34 The Shot Peener
ASSOCIATION OF SHOT BLASTING AND METAL FINISHING 2006

A Blast-O-Lite Industrial Beads

The Ultimate in Glass Bead Technology

CLEANING PEENING DEBURRING FINISHING

Glass beads are low-cost, one-step, and environmentally friendly. Find out how glass beads can partner with your industrial projects.

Contact: Rick Symanski, Industrial Bead Sales Manager 330.861.1013 rsymanski@jacksonproducts.com

Before

After

www.flexolite.com

Blast-O-Lite A Div. of Jackson Products, Inc.
GEAR TECHNOLOGY brings you technical articles on gear and gear drive design, manufacturing, testing and troubleshooting, from fundamentals to cutting-edge research. If you need to learn about gears, there’s no better place than Gear Technology—and it’s Free!

Also, if you purchase or specify gears, bearings, motors, speed reducers, gear drives or other mechanical components, visit www.powertransmission.com for the most comprehensive online directory of power transmission components and their manufacturers.

Subscribe for FREE online at www.geartechnology.com
Blast Rooms, Designed & Installed for a Perfect Fit

With the acquisition of Hoffman Blast Room assets, Empire can now meet virtually any blast room requirement, including turnkey installation.

- We offer package and field-erected rooms for parts and equipment of all sizes
- Your choice of manual, vibratory or screw-type media-collection floors
- A complete range of media-recycling devices
- Economical alternatives to full rooms, such as our do-it-yourself Pneumatic Blast & Recovery Systems
- The industry’s strongest warranty

Empire Has It All!

- Blast Rooms • Blast Cabinets • Portable Blasters • Automated Blast Systems

Empire Airblast
2101 West Cabot Boulevard, Langhorne, PA 19047-1893
Call: (215) 752-8800 • E-Mail: Airblast@empire-airblast.com
Fax: (215) 752-9373 • Visit: www.empire-airblast.com
Industry News

New Products • New Companies • Awards • Upcoming Events • People in the News

Hard rubber masking for shot peening

Portland, Connecticut. Airex Rubber Products has been manufacturing precision molded, custom made rubber parts for customers worldwide since 1943. Our specialty is designing and manufacturing hard rubber masking for shot peening, vibratory finishing, glass bead peening, plating, plasma spraying (including HOVF), grit blasting, HA Coating and powder coating procedures.

Our masks are cured rubber parts that snap over the areas of your metals that you want to protect from the media. These masks are made specifically for a part number. Therefore, they fit tightly around your metal part, hugging the contours and configurations snugly. The time required for masking is reduced from minutes or hours to literally seconds. Depending upon the particulars of the individual procedures, (dwell time, stand-off distance, p.s.i., media coarseness and temperature), our customers use the same masks for numerous cycles before they have to be replaced. The result is a distinct line of demarcation, no overspray and uniform finished parts. Airex also manufacture seals, boots, bellows, gaskets, extrusions (for part protection and media masking), plugs and other rubber products, and we are well experienced at rubber-to-metal bonding and rubber-to-non-metallic material bonding.

Airex Rubber Products also designs and manufactures rubber part protectors to guard against dings and scratches that can turn an expensive finished or nearly-finished metal part into a piece of scrap.

For our customers, we provide free on-site trouble-shooting services. In other words, our engineers will walk through your facilities with you to help you find solutions to your masking or part protection problems.

For more information, contact Jim Hetrick by Phone: (860) 342-0850 ext. 304 or Email: jhetrick.airex@earthlink.net

Nadcap exceeds 2006 goal of 3,220 audits worldwide

The Performance Review Institute (PRI) announced that the 2006 target of 3,220 Nadcap audits has been exceeded. This is a great achievement and is indicative of the efficiency of the organisation and of the increasing worldwide recognition of the Nadcap brand. Perhaps one of the most important ingredients in the success of Nadcap is that subscribers feel it provides an absolute assurance that special process and product services are available, and that quality and operational excellence are delivered to their customers.

Aerospace suppliers who participate in Nadcap audits receive feedback on their performance and gain a competitive advantage in world markets. The growing number of suppliers and customers who are Nadcap accredited is indicative of the demand for high-quality, cost-effective aerospace parts.

The commitment of aerospace suppliers is not to be underestimated: the Supplier Support Committee (SSC) is active in encouraging suppliers to participate fully in the Nadcap program and reap the benefits of involvement. SSC Chairperson Dave Michaud of Fountain Plating confirmed: “The SSC supports all suppliers that are either Nadcap accredited or working towards achieving Nadcap accreditation. The primary way in which we do this is via supplier-focused sessions at the quarterly Nadcap meetings, which all suppliers are welcome to attend.”

PRI has achieved this reputation by streamlining processes while maintaining high standards of service. One example of the cutting edge ethos of the organisation is the continuing enhancement of the audit-specific website, www.eAuditNet.com, which enables suppliers and subscribers online real time access to the accreditation process, as well as a Qualified Manufacturers List (QML) for quick reference.

To support the suppliers as they work towards Nadcap accreditation, PRI introduced the Nadcap Customer Support Initiative (NCSI) in 2004. Data for 2004-2005 shows that, on average, NCSI attendees incur 33% less major NCRs and 17% less minor NCRs during their initial audits than the overall average for the same period. In addition, it took NCSI attendees 37 supplier days to close out their audit, while the overall average for the same period was 47 supplier days to close out an audit. NCSI is a free web-based training program which assists suppliers in learning about the Nadcap system, enabling them to achieve accreditation more efficiently.

Arshad Hafeez, PRI Director of Global Business Operations, confirmed: “PRI is committed to efficiency and accessibility of information. The surpassing of the target of 3,220 audits at this stage is proof of the dedication of all Nadcap stakeholders to special process and product quality throughout the global aerospace industry.”

Editor’s Note: Learn more about PRI at their booth at the 2006 EI Shot Peening workshop in Indianapolis.

Pangborn® Corporation Wins Major Airblast System Installation Contract at Anniston Army Depot

Hagerstown, Maryland. Pangborn Corporation, a leading global manufacturer of surface preparation equipment and service provider for the metals industry, has been awarded a major contract at Anniston Army Depot, Anniston, Alabama.

The contract calls for Pangborn to remove existing rooms, duct work and ventilation equipment. Structural modifications will be made to house three complete airblast rooms that will incorporate the latest airblast technology and ventilation equipment. Adherence to a completion schedule is important for the operation at Anniston. Pangborn® will have the system running in the 2nd quarter of 2007.

Pangborn Corporation, based in Hagerstown, MD, has led the way in all aspects of the surface preparation industry since its inception in 1904. From the design of equipment, to the services and products required to install, maintain and operate blast machines, Pangborn is positioned to continuously serve its customer base as it enters its second 100 years of operation.
The Original CLELAND
SHOT CLEANING SPIRAL SEPARATOR

The Cleland Spiral Separator is the most successful method of separating round product from cracked, broken, or non-round materials. The Cleland Spiral Separator is available with a self-cleaning hopper to ensure total emptying of the top hopper bin.

“Cleland Spirals Work Around the World”
Phone/Fax: (763) 571-4606
Cleland Manufacturing Company
2125 Argonne Drive
Minneapolis, Minnesota 55421 USA

SAM YOUNG ABRASIVES MEDIA

Carbon & Stainless Steel Cut Wire Shot
Carbon & Stainless Steel Conditioned Cut Wire Shot
Aluminum Cut Wire Shot
Zinc Cut Wire Shot
Zinc Conditioned Cut Wire Shot
Zinc Cast Ball Shot

SAM YOUNG INDUSTRIAL CO. LTD.
186 HYO SUNG DONG
KYE YANG KU
INCHON, KOREA
TEL: +82-32-547-0357
FAX: +82-32-548-9350
E-MAIL: samyoungshot@hanmail.net

Stainless Steel Beads
Hi-carbon Steel Beads

The Only Steel Medium and Shot Media of Choice
Fusion Spherical particles, Anodized

Stainless Steel Beads: High Durability
Hi-carbon Steel Beads: Lower Cost, Less Wear, Highest Efficiency

Midwestern Industries, Inc.
1-877-4-SIZING
www.midwesternind.com
call Toll Free
email: info@midwesternind.com

ITOH KIKOH CO., LTD
41-1 Chuo-Cho Minami Kawasaki-ku
Kawasaki, Kanagawa, Japan
Tel: 044-231-6861 Fax: 044-231-6862
www.ikk.co.jp
High quality cast stainless steel shot & grit media used for cleaning, deburring, descaling, surface finishing and texturing of a wide variety of aluminum, stainless steel and other non-ferrous alloy castings. Ferrous contamination is avoided with a single step blast cleaning process.

CARBON & STAINLESS STEEL CUT WIRE

High hardness, peening quality cut wire used for shot peening a wide variety of machine parts and structural components, primarily used in the automotive and aircraft manufacturing industries, meeting their respective specifications.

With Vulkan you can count on HIGH QUALITY, STRONG TECHNICAL SUPPORT and EFFICIENT SERVICE at a competitive price.
Products & Services Bulletin Board

Nadcap seeking Consultant Auditors
The Performance Review Institute is seeking Aerospace industry experienced consultant auditors for some of its Nadcap Special Process programs.
- Flexible Schedule
- Competitive Daily Rate
- Paid Travel & Living Expenses
- Paid Annual Training
- No Need to Relocate
Apply on-line today at www.eAuditStaff.com or call 1-724 772 1616 ext. 8104.

Aero Almen Test Kit
The Aero Almen Test Kit was developed with the U.S. Air Force Materials Laboratory for use at all depainting facilities. For more information, call Electronics Inc. at 1-574-256-5001 or 1-800-832-5653.

2007 Shot Peening and Blast Cleaning Workshops
Singapore - March 13-14
Montreal, Canada - May 1-2
Tempe, Arizona USA - October 23-25
For more information, call Electronics Inc. at 1-800-832-5653 or 1-574-256-5001 or visit www.electronics-inc.com

Aviation Industry Conferences presents:
The 6th Annual Aircraft Maintenance Outsourcing Conference for the Americas
15-16 November 2006 (Las Vegas, Nevada, USA)
For more information:
Aviation Industry Conferences
31 Palace Street, London, SW1E 5HW, UK
Tel: +44 (0) 207 931 7186
Email: confs@aviation-industry.com
www.aviationindustrygroup.com

Almen Saturation Curve Solver Program
FREE from The Shot Peener
Get the program developed by Dr. David Kirk
Request the program at: http://www.shotpeener.com/learning/solver.htm
Over 483 copies have been downloaded!

Shot Peening Training
Could your organization pass an audit?
Receive training from the company that trains FAA inspectors! We show you how to improve the quality and control of your shot peening processes so that your organization can pass a FAA audit.
We offer these FAA approved classes:
- Shot Peening Audits – Course #AGL/0305/0005/8
- Shot Peening Training – Course #AGL/0305/0008/8
- Rotary Flap Peening – Course #AGL/0305/0007/8
For more information, please call:
1-800-832-5653
www.electronics-inc.com/educatn/FAAtrain.htm

SAM YOUNG ABRASIVES MEDIA
Carbon & Stainless Steel Cut Wire Shot
Carbon & Stainless Steel Conditioned Cut Wire Shot
Aluminum Cut Wire Shot
Zinc Cut Wire Shot
Zinc Conditioned Cut Wire Shot
Zinc Cast Ball Shot
SAM YOUNG INDUSTRIAL CO. LTD.
186 Hyo Sung Dong
Kye Yang Ku
Inchon, Korea
TEL: +82-32-547-0357
FAX: +82-32-548-9350
Email: samyoungshot@hanmail.net

ICSP 10
Tokyo, Japan
September 15 - 18, 2008
Important dates
Dead line for Abstract 31/Jul/2007
Submission of Manuscript 31/Jan/2008
Deadline for Registration 31/Jul/2008
Conference Office : Hidero Komada
Address :1-1-1 Higashimita Tama-ku Kawasaki
JAPAN 214-8571
Tell : +81-(0)44-934-7364
e-mail : icsp10@isc.meiji.ac.jp

Promote your products and services here.
Contact our Advertising Department at 1-800-832-5653 or 1-574-256-5001
“How’s business?” It’s a question that is asked and answered with friends and colleagues everyday. From my viewpoint at EI, the answer is positive. As the world gets smaller due to leaps in technology and communication, quality products and responsible processes are more visible. We have found ourselves in a niche industry that is being refined, rediscovered and applied with new energy.

But it hasn't always been so easy for me. I ran my new business from my dining table in the early 1970's. My first significant client was Wheelabrator. Initially, I supplied their Air Pollution Control Division with controls for bag house and electrostatic precipitator dust collectors. It was 1978 before I was able to move into a small building and hire engineers and a production staff. At that point, I was building flow rate controls for Wheelabrator’s 16-wheel peen forming machine for Boeing. That’s how I discovered a unique and fascinating niche in the industry and the MagnaValve was born.

Wheelabrator has continued to be a significant contributor to our success and to many, many other companies and individuals. In employment opportunities alone, Wheelabrator provided jobs for 32 years in Mishawaka, Indiana. The Wheelabrator retirees club is still going strong in our community and we keep in touch with many of its members.

I’m at the point in my life where I have the time and inclination to reflect and I’m blessed to find myself having so much fun doing what I love. So why a picnic? EI is located on a beautiful property on the St. Joseph river and I saw a great opportunity to invite everyone that has ever worked at Wheelabrator to a picnic to celebrate and enjoy each other’s company. Over 400 people joined us and we had a great time.

Everyone has a story like mine about a client or mentor that made a significant contribution to their success. This picnic was my way to thank Wheelabrator for all they did for me and Electronics Inc.

Long-time friend Roger Johnson and me.

These are only a few of the picnic pictures; many more are online at www.electronics-inc.com. If you couldn’t attend the picnic, visit the web site. You may spot old friends that you haven’t seen in years.
For over 100 years, Pangborn Corporation has been a world-leading manufacturer of complete surface preparation systems, equipment and services. Because of our worldwide reputation for excellence in design, engineering, and service, people trust Pangborn to find the answers to higher productivity, peak efficiency and lower maintenance of their blast equipment.

Today's businesses expect the best, which is the only thing that we deliver.
The world’s leading provider of certified Almen strips since 1987

Visit our web site for specification charts.
www.electronics-inc.com

Electronics Inc.
Shot Peening Control
1-800-832-5653 or 1-574-256-5001